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Abstract. Graph similarity is an important operation with many applications.
In this paper we are interested in graph edit similarity computation. Due to the
hardness of the problem, it is too hard to exactly compare large graphs, and fast
approximation approaches with high quality become very interesting. In this pa-
per we introduce a novel upper bound computation framework for the graph edit
distance. The basic idea of this approach is to picture the comparing graphs into
hierarchical structures. This view facilitates easy comparison and graph mapping
construction. Specifically, a hierarchical view based on a breadth first search tree
with its backward edges is used. A novel tree traversing and matching method
is developed to build a graph mapping. The idea of spare trees is introduced to
minimize the number of insertions and/or deletions incurred by the method and a
lookahead strategy is used to enhance the vertex matching process. An interest-
ing feature of the method is that it combines vertex map construction with edit
counting in an easy and straightforward manner. This framework also allows to
compare graphs from different hierarchical views to improve the upper bound.
Experiments show that tighter upper bounds are always delivered by this new
framework at a very good response time.
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1 Introduction
Due to its ability to capture attributes of entities as well as their relationships, graph
data model is currently used to represent data in many application areas. These areas
include but are not limited to Pattern Recognition, Social Network, Software Engineer-
ing, Bio-informatics, Semantic Web, and Chem-informatics. Yet, the expressive power
and flexibility of graph data representation model come at the cost of high computa-
tional complexity of many basic graph data tasks. One of such tasks which has recently
drawn lots of interest in the research community is computing the graph edit distance.
Given two graphs, their graph edit distance computes the minimum cost graph edit-
ing to be performed on one of them to get the other. A graph edit operation is a kind
of vertex insertion/deletion, edge insertion/deletion or a change of vertex/edge’s label
(relabeling) in the graph.

A close relationship exists between graph editing and graph mapping. Given a graph
editing one can define a graph mapping and vice versa. The problem of graph edit
distance computation is then reduced to the problem of finding a graph mapping which
induces a minimum edit cost. Graph edit distance computation methods such as those
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based on A* [6, 13, 12] exploit this relationship and compute graph edit distance by
exploring the vertex mapping space in a best first fashion in order to find the optimal
graph mapping. Unfortunately, since computing graph edit distance is NP-hard problem
[16] those methods can not scale to large graphs. In practice, to be able to compare
large graphs, fast algorithms seeking suboptimal solutions have been proposed. Some
of them deliver unbounded solutions [14, 15, 1, 17], while others compute either upper
and/or lower bound solutions [9, 16, 2, 4].

Recent interesting upper bounds and the one introduced in this paper are obtained
based on graph mapping. The intuition is that the better the mapping between graphs,
the better the upper bound on their edit distance. In [10] a graph mapping method is
developed, which first constructs a cost matrix between the vertices of the two graphs,
and then uses a cubic-time bipartite assignment algorithm, called Hungarian algorithm
[8], to optimally match the vertices. The cost matrix holds the matching costs between
the neighbourhoods of corresponding vertices. The idea behind this heuristic being that
a mapping between vertices with similar neighborhoods should induce a graph mapping
with low edit cost. A similar idea is used in [16]. The main problem with these heuristics
is that the pairwise vertex cost considers the graph structure only locally. Thus, in cases
where neighborhoods do not differentiate the vertices, e.g., as with unlabeled graphs,
these methods work poorly. To enhance the graph mapping obtained by these methods
and tighten the upper bound, additional search strategies were deployed, however, at the
cost of extra computation time. For example, an exhaustive vertex swapping procedure
is used in [16]. A greedy vertex swapping is used in [11]. Even though much time is
needed by these improvements, the resulted graph mapping is prone to local optima,
which is susceptible to initialization.

This paper presents a novel linear-time upper bound computation framework for the
graph edit distance. The idea behind this approach is to picture the comparing graphs
into hierarchical structures. This view facilitates easy comparison and graph mapping
construction. To implement the framework, the breadth first search tree (BFST) repre-
sentation is adopted as a hierarchical view of the graph, where each comparing graph
is represented by a breadth first search tree with its backward edges. A pre-order BFST
traversing and matching method is then developed in order to build a graph mapping. A
slight drift from the pure pre-order traversal is that for each visited source vertex in the
traversal, all its children and those of its matching vertex are matched before visiting any
of these children. This facilitates for a vertex to find a suitable correspondence to match
among various options. In addition, the idea of spare trees is introduced to decrease the
number of insertions and/or deletions incurred by the method, and a lookahead strategy
is used to enhance the vertex matching process. An interesting feature of the matching
method is that it combines map construction with edit counting in easy and straight-
forward manner. This novel framework allows to explore a quadratic space of graph
mappings to tighten the bound, where for each two corresponding vertices it is possible
to run the tree traversing and matching method on the distinct hierarchical view im-
posed by these two vertices. Moreover, this quadratic space can be explored in parallel
to speed up the process, a feature which is not offered by any of the previous methods.
Experiments show that tighter upper bounds are always delivered by this framework at
a very good response time.
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2 Preliminaries

2.1 Graphs

In this section, we first give the basic notations. Let Σ be a set of discrete-valued labels.
A labeled graph G can be represented as a triple (V,E, l), where V is a set of vertices,
E ⊆ V × V is a set of edges, and l: V → Σ is a labeling function. |V | is the numbers
of vertices in G, and is called the order of G. The degree of a vertex v, denoted deg(v),
is the number of vertices that are directly connected to v. A labeled graph G is said to
be connected, if each pair of vertices vi, vj ∈ V , i ̸= j, are directly or indirectly con-
nected. In this paper, we focus on simple and connected graphs with labeled vertices. A
simple graph is undirected graph with neither self-loops nor multiple edges. Hereafter,
a labeled graph is simply called a graph unless stated otherwise.

A graph G = (V,E, l) is a subgraph of another graph G′ = (V ′, E′, l′), denoted G
⊆ G′, if there exists a subgraph isomorphism from G to G′.

Definition 1. (Sub-)graph isomorphism. A subgraph isomorphism is an injective func-
tion f : V → V ′, such that (1) ∀ u ∈ V , l(u) = l′(f(u)). (2) ∀ (u, v)∈ E, (f(u), f(v))
∈ E′, and l((u, v)) = l′((f(u), f(v))). If G ⊆ G′ and G′ ⊆ G, G and G′ are graph
isomorphic to each other, denoted as G ∼= G′.

Definition 2. (Maximum) common sub-graph. Given two graphs G1 and G2. A graph
G = (V,E) is said to be a common sub-graph of G1 and G2 if ∃ H1 ⊆ G1 and
H2 ⊆ G2 such that G ∼= H1

∼= H2. A common sub-graph G is a maximum common
edge (resp. vertex) sub-graph if there exists no other common sub-graph G′ = (V ′, E′)
such that |E′| > |E| (resp. |V ′| > |V |).

2.2 Graph Editing and Graph Edit Distance

Given a graph G, a graph edit operation p is a kind of vertex or edge deletion, a vertex
or edge insertion, or a vertex relabeling. Notice that vertex deletion occurs only for
isolated vertices. Each edit operation p is associated with a cost c(p) to do it depending
on the application at hand. It is clear that a graph edit operation transforms a graph
into another one. A sequence of edit operations ⟨pi⟩ki=1 performed on a graph G to get
another graph G′ is called graph editing, denoted Gedit = ⟨pi⟩ki=1. The cost of graph
editing is, thus, the sum of its edit operation’s costs, i.e. C(Gedit) =

∑k
i=1 c(pi).

Given two graphs G1 and G2 there could be multiple graph editings of G1 to get
G2. The optimal graph editing is defined as the one associated with the minimal cost
among all other graph editings transforming G1 into G2. The cost of an optimal graph
editing defines the edit distance between G1 and G2, denoted GED(G1, G2). That is,
GED(G1, G2) = minGeditC(Gedit). In this paper we assume the unit cost model, i.e.
c(p) = 1, ∀p. Thus, the optimal graph editing is the one with the minimum number of
edit operations.

Example 1 Fig. 1 shows two graphs G1 and G2. An optimal graph editing of G1 to get
G2 can be obtained as follows: A deletion operation of the edge (u1, u2), a relabeling
operation of the vertex u3 from label B into label C, an insertion of a new vertex u5

with label C, and an insertion of a new edge (u5, u4). Thus, GED(G1, G2) = 4.
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Fig. 1. Two comparing graphs G1 and G2.

2.3 Graph Mapping

Given two graphs G1 and G2, a graph mapping aims at finding correspondence between
the vertices and edges of the two graphs. Every vertex map f : V1 ∪{un} → V2 ∪{vn},
where un and vn are dummy vertices with special label ϵ, defines a graph mapping,
where the vertex u ∈ V1 or v ∈ V2 has no correspondence at the other graph if f(u) =
vn or f(un) = v, resp. The edge (u, v) ∈ E1 has no correspondence if (f(u), f(v))
/∈ E2. Also, the edge (v, v′) ∈ E2 has no correspondence if (u, u′) /∈ E1 such that
v = f(u) and v′ = f(u′).

There exists a relationship between graph editing and graph mapping. More gen-
erally any graph mapping induces a graph editing which relabels all mapped vertices,
and inserts or delete the non-mapped vertices/edges of the two graphs [5]. Conversely,
given a graph editing, the maximum common subgraph isomorphism (MCSI) between
G and G2 defines a graph mapping between G1 and G2, where G is the graph obtained
from G1 after applying the deletion and relabeling operations in the graph editing.

Example 2 Given the graph editing of Example 1. The graph G obtained from G1

after applying the edge deletion and vertex relabeling operations of this graph edit-
ing is shown in Fig. 1. The MCSI f = {(u1, v1), (u2, v4), (u3, v5), (u4, v3)} be-
tween G and G2 defines a graph mapping. On the other hand, consider the vertex
map f = {(u1, v2), (u2, v4), (u3, v1), (u4, v3), (u

n, v5)}. A graph editing can be de-
fined from f as: two relabeling operations on u1 and u3. Two deletion operations of
the edges (u1, u2) and (u2, u3). An insertion operation of a vertex corresponding to the
unmatched vertex v5. Two insertion operations of the edges (u4, u5) and (u2, u5).

In view of the relationship between graph editing and graph mapping, the problem
of graph edit distance computation is reduced to the problem of finding an optimal
graph mapping – a mapping which induces a minimum edit cost. Due to the hardness of
obtaining such a graph mapping (computing graph edit distance is known to be NP-hard
problem [16]), approximate graph mapping methods become very popular, especially
when large graphs are under investigation [16, 11, 7, 3]. Any of those mapping methods
overestimates the graph edit distance. The intuition behind those methods is that the
better the mapping between the comparing graphs, the better the upper bound on their
edit distance. In this paper we present an efficient upper bound computation framework
for the graph edit distance which is also based on graph mapping. We first sketch the
framework and then present the details of the implementing algorithm. Hereafter, the
comparing graphs G1 and G2 are called the source and target graphs, resp; their edges
(resp. vertices) are called the source and target edges (resp. vertices).
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3 A Novel Upper Bound Computation Framework
The main idea of our approach is to picture the graphs to be compared into hierarchical
structures. This view allows easy comparison and fast graph mapping construction. It
also facilitates counting of the induced edit operations. Breadth first search (BFS) is a
graph traversing method allowing a hierarchical view of the graph through the breadth
first search tree it constructs. This view is defined as follows.

Definition 3. (BFST representation of a graph) Given a graph G and a vertex u ∈
G. Let Tu be the breadth first search tree (BFST) rooted at u. The BFST representation
of G given u, denoted as Gu, is defined by the BFST-Edges pair Gu = ⟨Tu, Eu⟩, where
Eu is the set of graph edges which are not part of Tu, called backward edges.
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Fig. 2. One BFST view for G1, Gu1
1 = ⟨Tu1 , Eu1⟩, and three different for G2, namely, Gv2
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⟨Tv2 , Ev2⟩, G

v1
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2 = ⟨Tv3 , Ev3⟩. Black edges constitute BFSTs and back-
ward edges are shown by dashed lines.

Example 3 Consider the graphs G1 and G2 of Fig. 1. Fig. 2 shows some of their hier-
archical representations using breadth first search trees.

Algorithm 1: BFST ED(G1, G2)

1: Let Tu and Tv be the breadth first trees rooted at u ∈ G1 and v ∈ G2, resp;
2: f = {0, . . . , 0}; fcost = 0; /*f is a vertex map*/
3: BFST Mapping AND Cost(Tu, Tv , f , fcost);
4: for each source or target backward edge do
5: if the matching vertices of its end points have no backward edge then fcost++;
6: output f and fcost;

Fig. 3. BFST ED: An upper bound computation framework of GED(G1, G2).

Given the source and target graphs G1 and G2. Let Tu and Tv be the breadth first trees
rooted at u ∈ G1 and v ∈ G2, resp. Based on the BFST view of the graph, an upper
bound computation framework of the graph edit distance can be developed. First a tree
mapping between Tu and Tv is constructed. This tree mapping determines a vertex
map between the vertex sets of the two graphs. Using this vertex map, the edit cost on
backward edges is calculated and then added to the tree mapping edit cost to produce
an upper bound of the graph edit distance. Note that it is possible as a result of the tree
matching method an edge is inserted at the position of a source backward edge. If it is
the case the final edit cost should be decremented because an edge is already there and
this insertion should not be occurred. This framework, named BFST ED (which stands
for the bold letters in: Breadth First Search Tree based Edit Distance), is outlined in
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Fig. 3. The vector f holds the map on graph vertices. The value fi ̸= 0 indicates that
the ith vertex of V1 has been mapped. fcost is the graph mapping cost.

The most important step in this framework is the tree mapping and edit counting
method BFST Mapping AND Cost. The better the tree mapping produced by this
routine, the better the overall graph edit cost returned by the framework. The question
now is how to build a good tree mapping between two breadth first search trees? In the
following subsections we answer this question.

3.1 Random & Degree-based BFSTs Matching

The simplest and most direct answer to the previous question is to randomly match
vertices at corresponding tree levels. That is, a source vertex at a given tree level l can
match any target vertex at the corresponding level. This matching, however, may incur
a huge edit cost between the two trees as a vertex having no correspondence has to
be deleted as well as its subtree if it is a source one, or to be inserted with its subtree
if it is a target one.1 Moreover, any of these subtree insertions or deletions entails the
insertion or deletion of an edge connecting the subtree with its parent. Unfortunately, the
number of vertices that have no correspondence will increase as we go down the tree
using this matching method. Suppose that at a given tree level the number of source
vertices is equal to the number of target ones, and at one of its preceding levels, there
exist vertices with no correspondence. Deletions or insertions of subtrees made at the
preceding tree level will change the equality at the given level and entail extra deletions
and/or insertions.
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Fig. 4. A picture of the edit operations performed on two comparing BFSTs (a) using random
assignment (b) using OUT degree assignment. Vertex/edge insertions are shown by dashed ver-
tices/edges. Vertex relabeling is done on blacked source vertices.

Example 4 Given the source and target trees Tu1 and Tv1 of Fig. 2. The edit cost
returned by BFST ED is 13. The random matching in BFST Mapping AND Cost in-
duces 10 edit operations, and 3 edit operations are required for backward edge modifi-
cations. The vertex map returned by BFST Mapping AND Cost is as: f = {(u1, v1),
(u2, v3), (u3, v

n), (u4, v
n), (un, v2), (u

n, v4), (u
n, v5)}. This map includes 2 ver-

tex deletions, 2 edge deletions, 3 vertex insertions, and 3 edge insertions. Fig. 4 (a)
gives a picture on how the mapping AND cost method based on random assignment
matches the source Tu1 with the target Tv1 and computes their graph edit cost.

1 Since all edit modifications usually occur at the source tree to get the target one, any deletion
at the target tree is equivalent to an insertion at the source tree in our model.
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An idea to decrease the number of insertions and/or deletions caused by random
assignment, and thus decrease the overestimation of GED, is based on the OUT degree
of a BFST vertex defined as follows.

Definition 4. (OUT degree of a BFST vertex) Given a graph G. Let Tu be the BFST
rooted at u ∈G. For each tree vertex w ∈ Tu, the OUT degree of w, denoted OUT (w),
is defined as the number of its children in the tree.

The idea is to match the vertices at corresponding tree levels which have near OUT
degrees. According to this matching, vertices which have no correspondence will de-
crease and consequently the edit cost returned by the method as well. Based on this
idea, the edit cost in Example 4 is decreased from 13 to 10 edit operations as the ver-
tex map returned by BFST Mapping AND Cost has four less insertion and deletion
operations, two on vertices and two on edges, at the cost of one extra vertex relabeling
operation for matching the source vertex at the bottom level. The associated vertex map
is given as follows: f = {(u1, v1), (u4, v3), (u2, v

n), (u3, v2), (u
n, v4), (u

n, v5)}. This
map incurs 7 edit operations on the BFSTs and 3 on backward edges. Fig. 4 (b) pictures
the tree editing based on OUT degree assignment.

Although this matching method is very fast,2 still the overall edit cost returned is
far from the graph edit distance. In the running example, the best edit cost returned is
10 which is large compared with 4 – the graph edit distance. Another important issue of
this matching method which is not seen by the running example is that the method is not
taking care of the matching occurred for parents while matching children. It may happen
that for many matched children, their parents are matched differently which requires
extra edit operations. Though this counting can be accomplished in a subsequent phase
using the associated vertex map, the tree mapping cost will be very high. Next, we
present a tree mapping and matching method addressing all previous issues.

3.2 An Efficient BFSTs Matching Method
The bad overestimation of the graph edit distance returned by the previous method is
due to two reasons. One lies at the simple tree traversing method which does not take
previous vertex matching into account and blindly processes the trees level by level. The
second reason lies at the vertex matching process itself: Vertices are randomly matched
or in the best case are matched based on their OUT degrees which offer a very narrow
lookahead view for the comparing vertices. Not to mention the very large number of
insertions and/or deletions produced by this matching method. Below we introduce a
new tree traversal and vertex matching method which addresses all previous issues.

Traversing the comparing BFSTs in pre-order can offer a solution to the first issue
as vertices can be matched in the traversal order. This matching order guarantees that
vertices can be matched only if their parents are matched. Though the pre-order traver-
sal removes the overhead of any subsequent counting phase as in the previous method,
it limits the different options for matching a given vertex, where only one option is
allowed which is based on the visited vertex. To overcome this, one can compare and

2 No computations are soever required for random assignment; only climbing the source tree
and at each tree level the corresponding vertices are randomly matched. For OUT degree as-
signment, extra computations are required to match vertices with the closest OUT degrees.
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match all corresponding children of both an already visited source vertex and its match-
ing target before visiting any of these children. This in turn facilitates for a child to find
a suitable correspondence to match among various options.

What is the suitable correspondence for a vertex to match? It could be based on
the OUT degree as in the previous method. However, the OUT degree gives a very
narrow view as we have already noticed. Fortunately, the BFST structure offers a wider
lookahead view which is adopted by our method. This view is represented by a tuple,
called feature vector, consisting of three values attached with each vertex. These values
are calculated during the building process of the BFSTs.

Definition 5. (A feature vector of a BFST vertex) Given a graph G and let Tu be the
BFST rooted at u ∈ G. For each tree vertex w ∈ Tu, the feature vector of w, denoted
f(w), is a tuple f(w) = ⟨SUB(w), BW (w), l(w)⟩, in which:

– SUB(w) is the number of vertices and edges of the subtree rooted at w.
– BW (w) is the number of backward edges incident on w.
– l(w) is the vertex label.

Obviously, all tree leaves have SUB count zero. BW (w) is defined for each tree vertex
w as: BW (w) = deg(w) − (OUT (w) + 1). Based on Definition 5, a source vertex
favors a target vertex to match which has near vertex distance, defined as follows.

Definition 6. (Vertex distance) Given two source and target tree vertices w and w′

with their feature vectors f(w) and f(w′). The distance between w and w′, denoted
d(w,w′), is defined based on feature vectors as:

d(w,w′) = |SUB(w)− SUB(w′)|+ |BW (w)−BW (w′)|+ c(w,w′), (1)

where the cost function c returns 0 if the two matching items, i.e. vertices w and w′,
have identical labels, and 1 otherwise.

By considering the difference |BW (w)− BW (w′)| in calculating the vertex distance,
the method partially takes care of the backward edges while matching vertices. In fact,
BW (w) is introduced to minimize the number of edit operations required for matching
backward edges. Formally, let Cu = {u1, . . . , uk} and Cv = {v1, . . . , vl} be the chil-
dren of two matched source and target vertices u and v, in the given order. A child ui

of u favors a child vk of v to match based on the following equation.

k = argminvj∈Cv (d(ui, vj)). (2)

That is, the distance between a vertex ui and its matching vertex vk should be minimal
among other vertices. In cases where there are more than one candidate for a vertex to
match, then the method selects the one with the smallest vertex id.

So far the preorder traversal with Equation 2 addresses some of the previous issues:
No subsequent counting phase is required by the method and the method also offers a
wider lookahead view to better match the corresponding vertices. Unfortunately, this
traversal may worsen the other issues. In fact it may increase the number of insertions
and/or deletions because it could happen that for a visited vertex the number of its
children differs from the number of children of its matching vertex, though the total
number of vertices might be equal at the children level. To overcome this issue the idea
of spare trees is brought to the method.
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Definition 7. (spare subtrees) Given two comparing BFSTs Tu and Tv rooted at u ∈
G1 and v ∈ G2, resp. Any subtree of Tu or Tv rooted at a vertex w is called spare
subtree if the vertex w has no correspondence while pre-order traversing Tu and Tv.

The idea of spare subtrees has been introduced in order to answer the following
question: Why do we get rid of each unmatched vertex with its subtree and pay a high
edit cost for doing so, though it could be beneficial later on instead of being costly right
now. The pre-order traversing and matching method is developed by building a spare-
parts store STu at each comparing BFST Tu in order to preserve these unmatched
vertices and their subtrees. During tree traversal, when an encountered source or tar-
get vertex has no correspondence, the method asks the spare-parts store for a suitable
counterpart. If such a spare-part does exist it is matched and removed from the store,
otherwise the new vertex itself with its subtree goes to the relevant spare-parts store.
This idea guarantees that each vertex will get a counterpart as long as the other tree has
this counterpart, i.e., if the number of vertices of the other tree has at least the number
of vertices of the tree where the vertex belongs to. At the end of the tree traversal the
spare-parts store associated with the tree of small order will be empty and the other
store will contain a number of spare subtrees equal to the vertex difference ||V1|−|V2||.
Finally, the number of vertices and edges in each remaining spare subtree will be added
to the tree mapping cost. Fortunately, the size of each remaining spare subtree will be
very small.

Algorithm 2 in Fig. 5 is a recursive encoding of the method. In fact we do not put the
whole spare subtrees in the store, references to their roots are the only information that is
maintained (refer to line 12). Also, if a vertex and its subtree is characterized as a spare
part, the connecting edge with its parent vertex (the vertex where it hangs on) is deleted
and the tree mapping cost is updated (see line 3: All edges connecting children which
have no correspondence are deleted if they are source vertices and inserted otherwise).
Moreover, if this vertex is a source one, it is temporary blocked, i.e., it is temporary
removed from the pre-order traversal (line 13). Alternatively, if a spare source subtree
is matched and removed from the store, it goes directly into the pre-order traversal again
(line 28). It means that the root of this subtree will be hung on and become a child of
the currently processing parent vertex. For hanging this spare vertex no edge insertion
is required since the matching vertex, whether it comes from the other spare store or as
a corresponding child, has already charged by an equivalent deletion operation at line 3
of the edge connecting it with its parent.

Example 5 Fig. 6 explains how the traversing method (Algorithm 2) matches Tu1 with
Tv1 of Fig. 2 and computes the tree edit cost. The graph edit cost produced by BFST ED
is 5: 6 edit operations are required to transform Tu1 into Tv1 ; one of the tree edge inser-
tions is removed because it is occurred at the position of the backward edge (u2, u4),
and finally zero edit operations are required on the remaining backward edges.

Theorem 1. (Time Complexity) The procedure BFST mapping AND cost (Algorithm
2) returns the vertex map f and its induced edit cost fcost in O(d2|V1|), where d is the
maximum vertex degree in both graphs.

Theorem 2. (Correctness) The value fcost returned by BFST ED(G1, G2) with Algo-
rithm 2 at Fig. 5 is the edit cost induced by the returned vertex map f .
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Algorithm 2: mapping AND cost(Tr1 , Tr2 , f , fcost)

1: let Cr1 = {u11, . . . , u1n1} be the children of r1 in the given order;
2: let Cr2 = {u21, . . . , u2n2} be the children of r2 in the given order;
3: fcost+ = ||Cr1 | − |Cr2 ||; /* edge deletion if |Cr1 | > |Cr2 |, insertions otherwise */
4: Let Crl be the smallest set of children, l = 1 or 2 (in the following steps m = 1 or 2, m ̸= l)
5: for each child uli ∈ Crl do /*find a suitable correspondence from Crm .*/
6: k = argminumj∈Crm

d(uli, umj);
7: if l = 2 then f [umk] = uli;
8: else f [uli] = umk; umk is matched;
9: if l(uli) ̸= l(umk) then fcost++;
10: for each remaining umi ∈ Crm do /* each umi searches for correspondence at STrl .*/
11: if STrl = ∅ then /*umi is spared if the other store is empty */
12: STrm = STrm ∪ {umi};
13: Crm = Crm \ {umi};
14: else /*umi tries to find a suitable correspondence.*/
15: k = argminuj∈STrl

d(umi, uj);
16: if l = 2 then f [umi] = uk;
17: else
18: f [uk] = umi; umi is matched;
19: Crl = Crl ∪ {uk}; /*if uk is a source one, it goes into the preorder traversal again.*/
20: if l(uk) ̸= l(umi) then fcost++;
21: STrl = STrl \ {uk};
22: for each u1i ∈ Cr1 do
23: mapping AND cost(Tu1i , Tf [u1i], f , fcost);

Fig. 5. Pre-order traversing and matching method.

3.3 Improving the Overestimation: BFST ED ALL
Previously, based on the chosen graph vertex, a hierarchical representation of the graph
could be given. Thus, for each graph G, it is possible to construct |V | distinct hierarchi-
cal views, each of which starts from a different vertex. The multi-hierarchical views of
a graph gives us the opportunity to compare two graphs from different hierarchical per-
spectives and choose the best obtained graph mapping, instead of restricting ourselves
to a single view comparison. This multi-view comparison is implemented and called
BFST ED ALL. In fact BFST ED ALL explores |V1| × |V2| possible graph mappings
and returns the one with the least overestimation.

4 Experimental Evaluation
In this section, we aim at empirically studying the proposed method. We conducted sev-
eral experiments, and all experiments were performed on a 2.27GHz Core i3 PC with
4GB memory running Linux. Our method is implemented in standard C++ using the
STL library and compiled with GNU GCC.
Benchmark Datasets: We chose several real graph datasets for testing the method.
1) AIDS (http://dtp.nci.nih.gov/docs/aids/aidsdata.html) is a DTP
AIDS Antiviral Screen chemical compound dataset. It consists of 42, 687 chemical
compounds, with an average of 46 vertices and 48 edges. Compounds are labelled with
63 distinct vertex labels but the majority of these labels are H, C, O and N.
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Fig. 6. A possible tree editing transforming Tu1 into Tv1 , which is produced by the preorder
method (algorithm 2). Vertex and edge insertions are shown by dashed lines and vertex re-
labeling is shown by heavy-blacked lines. This tree editing has the following 6 edit opera-
tions given in order according to the algorithm: deletion of the edge (u1, u2), deletion of two
target edges which is equivalent to two edge insertions at the source tree, relabeling of u3,
deletion of v2 which is equivalent to vertex insertion at the source tree, and relabeling of
u2. The vertex map returned by this algorithm in the order of its construction is as follows:
f = {(u1, v1), (u4, v3), (u3, v4), (u2, v5), (u

n, v2)}.

2) Linux (www.comp.nus.edu.sg/˜xiaoli10/data/segos/linux_segos.
zip) is a Program Dependence Graph (PDG) dataset generated from the Linux kernel
procedure. PDG is a static representation of the data flow and control dependency within
a procedure. In the PDG graph, an vertex is assigned to one statement and each edge
represents the dependency between two statements. PDG is widely used in software
engineering for clone detection, optimization, debugging, etc. The Linux dataset has in
total 47,239 graphs, with an average of 45 vertices each. The graphs are labelled with
36 distinct vertex labels, representing the roles of statements in the procedure, such as
declaration, expression, control-point, etc.
3) Chemical is a chemical compound dataset. It is a subset of PubChem (pubchem.
ncbi.nlm.nih.gov) and consists of one million graphs. It has 24 vertices and 26
edges on average. The graphs are labelled with 81 distinct vertex labels.

4.1 Comparison With Exact Methods
We first evaluate the performance of our methods, BFST ED and BFST ED All, against
exact GED computation methods. We want to see how much speed up can be achieved
by our methods at the cost of how much loss in accuracy of GED. In this experiment,
we use the recent exact GED computation method named CSI GED [5], and randomly
choose two source and target vertices to run BFST ED. As the exact computation of
GED is expensive on large graphs, to make this experiment possible, graphs with ac-
ceptable order were randomly selected from the data sets. From these graphs, four
groups of ten graphs each were constructed. The graphs in each group have the same
number of vertices, and the number of vertices residing in each graph among different
groups varies from 5 to 20. In this experiment, each group is compared with the one
having the largest graph order. Thus, we have 100 graph matching operations in each
group comparison. For estimating the errors, the mean relative overestimation of the
exact graph edit distance, denoted ϕo, is calculated.3 Fig. 7 plots the value ϕo of each

3 ϕo is defined for a pair of graphs matching as: ϕo = |λ−GED|
GED

, where λ and GED are the
approximate and exact graph edit distances, resp.
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Fig. 7. Comparative accuracy and time with exact method.
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Fig. 8. Comparative accuracy and time with different methods: Small order graphs.
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Fig. 9. Comparative accuracy and time with different methods: Large order graphs

method on each group for the different data sets, where the horizontal axis shows the
order of the comparing group. It is clear that ϕo = 0 for CSI GED. Fig. 7 also plots the
mean run time ϕt taken by each method on each group for each data set.
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First, we observe that on the different data sets the accuracy loss of BFST ED All
is very small on small order groups and increases with increasing graph order. It is
between 10-20% on large groups. Accuracy loss of BFST ED, on the other hand,
is even worse and exhibits the same trend. It is about 3-4 times larger than that of
BFST ED All. Looking at the run time of the three methods. We observe that on large
groups comparisons, BFST ED All outperforms CSI GED by 2-5 orders of magnitude
and it is outperformed by BFST ED from 1-2 orders of magnitude. One thing that
should be noticed is that on the very small order group, the one with order 5, CSI GED
is faster than BFST ED All on all real dat sets.

4.2 Comparison With Approximation Methods
In this set of experiments, we compare our methods against the state-of-the-art upper
bound computation methods such as Assignment Edit Distance (AED) method [10], the
Star-based Edit Distance (SED) method [16], and their extensions. These methods are
extended by applying a postprocessing vertex swapping phase to enhance the obtained
graph mapping. In [5], a greedy vertex swapping procedure is applied on the map ob-
tained from AED, and is abbreviated as ”AED GS”, and in [16] an exhaustive vertex
swapping is applied on the map obtained from SED and is abbreviated as ”SED ES”.
The executables for competitor methods were obtained from their authors.
Comparison With Respect to GED First we compare the different methods on graphs
where the exact graph edit distance is known. Therefore, we use the groups of graphs
from the previous experiment. To look at bound tightness, ϕo is calculated for each of
these methods. Obviously, the smaller the mean relative overestimation, the better is the
approximation method. We also aim at investigating ϕt for each method.

Fig. 8 plots ϕo and ϕt for each method on the different data sets. It shows that
BFST ED All always produces smaller ϕo values than the ones produced by other
methods on all data sets. The gap between ϕo values is remarkable on the AIDS and
Chemical data sets, where ϕo values of BFST ED All are almost half of those pro-
duced by SED ES, the best competitor. On Linux data set, those produced by SED ES
are comparable with ours on the largest group comparison. In addition to the good
results on bound tightness, the average run time of BFST ED ALL is better than that
of other methods. It is about 2 times faster than the best competitor. Looking at each
method individually, there is a clear trade-off between bound tightness and speed. The
first map is always come at high speed but at the cost of accuracy loss. In conclusion, we
can see that the upper bound obtained by BFST GED ALL provides near approximate
solutions at a very good response time compared with current methods.
Comparison on Large Graphs In this set of experiments we evaluate the different
methods on large graphs. In each data set, four groups of ten graphs each are selected
randomly, where each group has a fixed graph order chosen as: 30, 40, 50, and 60. Each
of these groups is compared using the different methods with a database of 1000 graphs
chosen randomly from the same data set. Fig. 9 shows the average edit overestimation
returned by each method per graph matching on each group. The average edit overes-
timation is adopted instead of ϕo since there is no reference GED value available for
large graphs. The figure also shows the average running time for all data sets.

Fig. 9 shows that both AED and SED have the same accuracy on all data sets with
almost the same running time (except that AED is two times faster on Linux). AED GS
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shows little improvements of accuracy over AED with time increase. BFS ED, on the
other hand, shows much better accuracy with 2-3 orders of magnitude speed up over
the previous three methods. Also, both BFST ED All and SED ES show the same ac-
curacy on all data sets; but with two orders of magnitude speed up for the benefit of
BFST ED All. These results shows the scalability of our methods on large graphs.

5 Conclusion
In this paper, the computational methods approximating the graph edit distance are
studied; in particular, those overestimating it. A novel overestimation approach is intro-
duced. It uses breadth first hierarchical views of the comparing graphs to build different
graph maps. This approach offers new features not present in the previous approaches,
such as the easy combination of vertex map construction and edit counting, and the
possibility of constructing graph maps in parallel. Experiments show that near overes-
timation is always delivered by this new approach at a very good response time.
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